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Abstract

Migrants attempting to reach a safe destination often have to
make navigation decisions based on very limited information
that is to a large degree sourced from other migrants that have
made the journey before. Communication between migrants
could therefore be a key factor in determining the dynam-
ics of migration. We study the effect of information trans-
fer on the variability and optimality of migration routes us-
ing an agent-based model with explicit representation of ge-
ography, resources and the agents’ knowledge thereof. We
find that unless agents very quickly acquire objective infor-
mation from the environment, a higher degree of social in-
formation exchange leads to less predictable and less optimal
migration routes. This indicates that if a high proportion of
information is socially received, routes are the result of self-
organization rather than optimization. We suggest that similar
effects should occur in all situations where individuals have
to make complex decisions under limited information but in
a social context.

Introduction
Next to birth and death, migration is one of the three fun-
damental processes of demography (Courgeau et al., 2017).
Traditionally, theory on migration was largely embedded in
the economical tradition and primarily concerned with eco-
nomically motivated, voluntary migration, employing a top-
down, population-level view (Radu, 2008). This appears to
be a reasonable approach if certain conditions are met: If
migrants are indeed largely looking for material benefits and
are in a situation where they can make well-informed, ratio-
nal decisions and if further transit from the country of ori-
gin to the destination provides no major complications, then
the actions of individual migrants can be usefully aggregated
into population-level flows.

These assumptions do, however, not always hold. First, in
many cases considerations beyond economical benefits af-
fect migration decisions. We know, for example, that exist-
ing social networks in, as well as knowledge about the target
country can play an important role (De Haas, 2010). Sec-
ond, the migration journey itself can be a challenging and
unpredictable factor (Kingsley, 2016), in particular given re-
cent developments in attitude towards migration in Western

countries (Ekman, 2018). Migrants often have to travel large
distances under severe resource constraints, while having to
avoid police and border guards. However, when transiting
through a third country, they usually have only limited in-
formation about the local conditions (Borkert et al., 2018).
Finding a good travel route can therefore be difficult. Conse-
quently in many cases migrants rely heavily on information
provided by others that have made the journey before them
(Dekker et al., 2018; Borkert et al., 2018). This could lead
to a situation where migration depends as much on the dy-
namics of information transfer and social contacts as it does
on material conditions and where interactions between indi-
viduals are a crucial part of the system dynamics.

We investigate if and to which degree social interactions
and in particular information transfer can affect the estab-
lishment of migration routes and the efficiency of individual
journeys. We do this with the help of a spatially explicit
agent-based model. Agent-based models of migration are
nothing new (e.g. Klabunde et al., 2015; Simon et al., 2016).
Contrary to previous studies, however, we explicitly distin-
guish between the objective state of the world and the indi-
viduals’ knowledge of that state and model in detail how this
knowledge is exchanged between agents.

It is important to note that we do not attempt to make
quantitative predictions about the real world or even model
a specific real-world system. Instead our model is intended
as a ”proof of causality” that demonstrates how certain
micro-processes can result in specific macroscopic patterns
(Grimm et al., 2005).

MODEL DESCRIPTION
We model a population of agents migrating through a net-
work of cities and transport links towards a number of tar-
gets. Agents start out with no or very little knowledge about
the world but can acquire knowledge either from their local
environment or by communicating with other agents. Based
on the information they have collected, they attempt to find
the best path to one of the targets.

While our model is not intended as an accurate rep-
resentation of a specific real-world scenario we very



parameter explanation
pkc Prob. of staying in contact with other agents.
pis Prob. of communicating while staying.
pic Prob. of communicating with contacts.
pt Prob. of transferring an item of information.
pfl Prob. of discovering local links when staying.
pfd Prob. of learning about connected locations.
xs Exploration speed while staying.
xm Exploration speed while moving.
ei Communication error.
ci Convince; change doubt into trust.
cu Confuse; change trust into doubt.
ce Convert; change trust into trust.

Table 1: Most important model parameters.

loosely based model structure and parameter values
on the situation of Syrian refugees on their way to
Europe at the onset of the ”refugee crisis” in 2015
(see https://www.southampton.ac.uk/baps/
inventory/data-sources.page).

The source code for the model in Julia (Bezanson et al.,
2014) is publicly available at https://github.com/
mhinsch/RRGraphs (tag ALife2019).

In the following we will explain each component of the
model in more detail (see appendix for the algorithm in
pseudo code).

Environment
The simulated world consists of a random geometric graph
(Gilbert, 1961) of 600 cities connected by transport links
(see Figure 1). Cities have an inherent quality q ∼
unif (0, 1) that represents how easy it is for migrants to stay
in that city. This could include for example frequency of
police controls, general safety, or availability of cheap ac-
commodation. In addition, each city has an abstract re-
source availability (representing how easy it is to acquire
food, money, clothes, etc.) r ∼ unif (0, 1). Transport links
have a specific friction f ∼ unif (0, 1) that determines how
many resources are required to use them.

In addition to the regular cities there are 6 entry and exit
locations, respectively, at the very edges of the simulated
world, that represent border crossings. Entries and exits
are connected by transport links to the nearest cities. As
areas close to borders are usually strongly controlled we
assume that these links have a substantially higher friction
(unif (0, 10)).

Agents
Active agents at all times are either located in a city or tran-
siting between cities. A mean number of 20 agents enter
the world in every time step (using a Poisson process) by

Figure 1: Screenshot of the model. Top left: cities (blue) and
transport links (green: fast, red: slow). Top right: Transport
links, brighter color indicates more traffic. Bottom left: One
agent’s knowledge (planned path in red). Bottom right: The
same agent’s social network (green - direct links).

appearing at a randomly selected entry point. They are re-
moved from the world, becoming inactive, as soon as they
arrive at an exit point.

Agents have and collect information about the world. For
each city and transport link they have either no information
or estimates of the corresponding entity’s properties (quality,
resource availability, friction) together with trust values that
indicate the assumed quality of each estimate.

Agents keep in contact with a number of other agents,
enabling them to exchange information. An agent’s con-
tacts can be active or inactive and can be located any-
where (i.e. not necessarily at the same location as the agent).
Agents lose contacts at a rate of 10% per time step.

In each time step agents that have a planned route move
to the next city, while those that do not stay at their current
location to gather information. Staying agents explore their
surroundings, meet agents at the same location, exchanging
information with them as well as potentially adding them to
their list of contacts (with probability pkc), and potentially
gain resources. Furthermore, all agents communicate with
their contacts (see below) once per time step.

Information exchange Agents communicate with each of
their contacts with a probability pic and - if they are not mov-
ing - with locally present agents with probability pis per time
step. When agents communicate, each item of information

https://www.southampton.ac.uk/baps/inventory/data-sources.page
https://www.southampton.ac.uk/baps/inventory/data-sources.page
https://github.com/mhinsch/RRGraphs
https://github.com/mhinsch/RRGraphs


is exchanged with a probability pt. Information on locations
or links that only one of two interacting agent is aware of
is transferred directly. If both agents have information on
a given feature they adapt their knowledge based on their
respective beliefs and confidence.

We used a simple mass action approach (Horn and Jack-
son, 1972) to model knowledge exchange. An item of in-
formation is represented by a value estimate v and a level of
trust t ∈ (0, 1) with its inverse doubt d = 1− t. We assume
that during an episode of communication the doubt and the
trust portion of the agents interact independently and in pro-
portion to their ratio (see below). Doubt interacting with
doubt produces doubt. The part of an agent that doubts can
be convinced (parameter ci) by an other agent’s trust. Trust
interacting with trust can either confuse (cu) an agent, lead-
ing to doubt depending on the agents’ difference in estimate
δv , or convert (ce) it to the other’s opinion. The new opinion
(d′A, v

′
A) of agent A receiving agent B’s opinion (dB , vB) is

then calculated as:

δv =
|vA − vB |
vA + vB

d′A = dAdB + (1− ci)dAtB + cuδvtAtB (1)
v′A = [tAdBv1 + cidAtBvB +

tAtB(1− cuδv)((1− ce)vA + cevB)]/(1− d′A)

In some scenarios we assumed communication to be noisy
(with error ei). In these cases agents receiving information
perceive the other agent’s trust/doubt and value wrongly and
tB , dB and vB in equation 1 are replaced with their per-
ceived counterparts: tB,p = tB + unif (−ei, ei), vB,p =
vB + unif (−ei, ei), dB,p = 1− tB,p.

Exploration While staying in a city or traveling along a
transport link, agents improve their knowledge about the re-
spective location or link by increasing the accuracy of their
estimates of its properties as well as the corresponding trust
values and by ”discovering” geographically connected loca-
tions and links.

Routes Agents move through the world according to
planned routes. These routes can either be complete paths
to one of the exits or a single step to one of the neighbor-
ing cities. Any planning always happens solely based on the
subjective information available to the agents.

Agents choose their routes based on the links’ friction and
the cities’ suitability, attempting to minimize friction but dis-
counting by the suitability of cities. The suitability s of a city
c is a function of its specific quality q, resource availability
r and proximity to the target x, where the former two are
discounted by the agent’s trust in the information:

s(c) = qvc q
t
c +

rvc r
t
c

10
+
xc
2

(2)

The movement costs m associated with a link l to city c
are then calculated based on the links friction f as:

ml = fvl
4

1 + s(c)
(3)

If an agent knows about any exit locations and can con-
nect it to its current location, it plans an optimal path to that
location minimizing the sum of movement costs m. If it
does not know any exits or is not able to find a path to any of
them it optimizes locally by picking from all links connected
to its current location with probability proportional to 1/m.

Resources While staying in a city agents can increase
their level of resources dependent on a city’s resource avail-
ability. Traveling on a transport link on the other hand uses
resources according to the link’s friction. In the current ver-
sion of the model resources are only used as a means to
evaluate the agents’ success and have no effect on their be-
haviour.

Results

scenario value parameters
pkc pis pic pt

low 0.1 0.1 0.1 0.1
social medium 0.3 0.3 0.3 0.3

high 0.6 0.6 0.6 0.6
pfl pfd xs xm

low 0.1 0.1 0.3 0.3
explore medium 0.5 0.3 0.5 0.5

high 1.0 1.0 1.0 1.0

Table 2: Parameter values for main scenarios (see Table 1
for more information).

We tested how different sources of information affect the
optimality and predictability of migration routes. For that
we defined three levels of social information exchange and
three levels of exploration, each composed of several param-
eters (see Table 2). We changed the level of social informa-
tion exchange by changing at the same time the probability
to keep in contact with encountered agents, the probability
to communicate and the probability to transfer information
while communicating. The level of exploration consists of
the probabilities to find links and destinations, respectively,
as well as the speed with which agents adjust their estimates
and trust values to external information. For each combi-
nation of these scenarios we also investigated the effects of
imperfect communication (ei = 0.1).

For each parameter combination we ran ten replicates for
two different random geographies each. As preliminary sim-
ulations showed that equilibrium is usually reached after
200-300 time steps, we ran each simulation for 500 time
steps.
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Figure 2: Mean capital for different levels of social activity
and exploration in a scenario without (top) and with (bot-
tom) communication error.

We find that the quality of migration routes as measured
by the amount of capital individuals retain increases as ex-
pected with the efficacy of exploration. It decreases, how-
ever, with the amount of social activity (Figure 2), at least
for medium and high exploration. At the same time we see
that the variation (measured as relative standard deviation)
in traffic per link within runs increases with social activity
as well as (slightly) with level of exploration (Figure 3). An
increase in communication as well as exploration therefore
leads to traffic concentrating more strongly on a few migra-
tion routes. These are, however, worse (as measured in cap-
ital used) if communication is higher.

Noisy communication further reduces the quality of trav-
eled routes (Figure 2), but boosts the effect of exploration on
the concentration of routes.

To determine if individuals end up using similar migra-
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Figure 3: Relative standard deviation of number of visitors
over all links for different levels of social activity and explo-
ration. Scenarios without (top) and with (bottom) commu-
nication error are shown.

tion routes for a given geography we calculated for each exit
city the standard deviation over all replicate runs of the pro-
portion of migrants it received over the course of the model
run. The mean value of that measure over all cities is an
indication of the ”repeatability” (or rather its inverse) of mi-
gration routes across replicate runs. We find that higher ex-
ploration makes routes more deterministic, while more com-
munication, in particular if it is error-free strongly increases
the variation between replicate runs (Figure 4).

Summing up the results, if communication or exploration
are high, most individuals follow similar routes (high varia-
tion in traffic within runs). For high communication, how-
ever these routes tend to be sub-optimal (low capital) and
different for different replicate runs (high variation in traffic
between runs).
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Figure 4: Mean (over exit cities) of the standard deviation of
proportion of visitors at the same city across replicate runs.
Scenarios without (top) and with (bottom) communication
error are shown.

In conclusion this indicates that if the proportion of infor-
mation that individuals receive through communication with
others as opposed to exploration is high, migration routes are
the result of a process of social coordination rather than in-
dividual optimization. In this case the routes are therefore an
emergent property of the interactions between individuals.

Discussion
We have shown that in an agent population navigating unfa-
miliar terrain the agents’ reliance on social information can
lead to the emergence of unpredictable, sub-optimal naviga-
tion routes.

This has direct consequences for migration research.
While the integration of network effects lead to the insight
that social effects are at least as important in determining

migration decisions as economic factors (Radu, 2008) our
results demonstrate that additional internal feedback mech-
anisms can make at least migration routes effectively unpre-
dictable. In particular, in a situation with forced migration,
however, or generally when preferences for specific target
countries are weak, the route itself can strongly affect the
choice of destination. Self-organized routes might therefore
substantially reduce the predictability of the entire migration
process.

These results have practical implications as well. Any
third-party reaction to migration - be it political, in attempt-
ing to prevent or canalize it, or humanitarian, in trying to im-
prove the migrants’ often dire situation - has to rely to some
degree on being able to predict where migrants are to be
found at a given time (Frontex, 2018). This is made harder
the less deterministic the routes are. On the other hand our
results also show that providing migrants with comprehen-
sive, reliable information might improve the situation for all
parties. A practical recommendation to be deduced from
these findings would therefore be that migrants should be
provided with good, reliable travel information and that ef-
forts should be made to increase the recipients’ trust in that
information.

Going beyond migration, what we found suggests that
similar effects could occur in any situation where individ-
uals make sequences of decisions based on limited informa-
tion and have to choose between relying on (possibly incom-
plete) first-hand information or (possibly unreliable) group
knowledge.

As it stands our model serves primarily as a conceptual
proof of principle that demonstrates how certain effects will
occur if a number of assumptions are met. In the next step it
will be necessary to determine how applicable these results
are to real-life situations.

To do this we are currently in the process of perform-
ing a systematic analysis of the response of various outputs,
such as those shown in Figures 2, 3 and 4, to the changes
in selected input parameters. In particular, in order to as-
sess the uncertainty of the output and sensitivity to param-
eter changes, statistical emulators (meta-models) are being
used, following the Gaussian process-based approach advo-
cated for example by Oakley and O’Hagan (2004).

Furthermore we intend to develop a version of the model
that more closely represents a specific real-world scenario.
This includes basing as many parameter values as possible
on empirical data, transitioning to continuous and realistic
temporal and spatial scales and calibrating the model results
to some real-life characteristics of the properties of existing
migrant route networks.
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Algorithm in pseudocode
create random world

for 500 time steps:
n ˜ Poisson(20) times:

insert agent at random entry city

for all agents:
if previously moving or no plan:

explore location
exchange info locally
gain contacts
find optimal path or

best next step
update plan

else:
decide next step following plan
explore transport link
start move to target

exchange info with contacts

drop contacts

if at exit:
remove


	Introduction
	MODEL DESCRIPTION
	Environment
	Agents

	Results
	Discussion
	Acknowledgements
	Algorithm in pseudocode

